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A B S T R A C T   

Ecological research focuses on the spatio-temporal patterns of ecosystems and communities. The recently pro
posed framework of Community Trajectory Analysis considers community dynamics as trajectories in a chosen 
space of community resemblance and utilizes geometrical properties of trajectories to compare and analyse 
temporal changes. Here, we extend the initial framework, which focused on consecutive trajectory segments, by 
considering additional metrics with respect to initial or baseline states. Addressing questions about community 
dynamics and more generally temporal and spatial ecological variability requires synthetic and efficient modes of 
representation. Hence, we propose a set of innovative maps, charts and trajectory roses to represent trajectory 
properties and complement the panel of traditional modes of representation used in community ecology. We use 
four case studies to highlight the complementarity and the ability of the new metrics and innovative figures to 
illustrate ecological trajectories and to facilitate their interpretation. Finally, we encourage ecologists skilled in 
multivariate analysis to integrate CTA into their toolbox in order to quantitatively evaluate spatio-temporal 
changes.   

1. Introduction 

Ecology aims to identify processes underlying the distribution and 
abundance of organisms, along with those that determine how organ
isms modify their abiotic environment (Kendall, 2015). Two paradigms 
are widely accepted amongst ecologists: (1) biological assemblages are 
amongst the best response variable to estimate the impact of changes in 
natural ecosystems and (2) temporal changes in community assemblages 
indicate that some processes have been at work to generate them 
(Legendre and Gauthier, 2014). Temporal changes in biological assem
blages are the sum of local colonisation and extinction events, as well as 
changes in the biomass and relative abundance of taxa within and 
amongst samples (Buckley et al., 2018). Quantifying and forecasting 
temporal changes in biodiversity and ecological shifts due to both nat
ural and anthropogenic drivers is therefore a central issue in ecology 
(Dornelas et al., 2013). This requires repeatedly sampling target 

communities over time and, often, studying their evolution compared to 
an initial state and/or a chosen baseline (goal defined as an ecological 
state to be achieved (Bioret et al., 2009)). To this aim, consecutive 
ecological states are defined by a set of environmental or biological 
parameters used as descriptors of the ecosystem existing on a given 
location, at a given time (chemical and physical parameters, absolute or 
relative abundance of population species, specific richness, pollution 
level…). In a period of dramatic increase of anthropogenic impacts, such 
approaches are particularly relevant for studying natural variability, and 
have potential implications in management and ecological restoration or 
in the development of ecological indicators. 

The development of community ecology has historically been influ
enced by static depictions of inherently dynamic processes which led to 
many important insights about the structure of communities (Yang, 
2020). Analytical and representation methods of biodiversity changes 
over time constitute an essential and important domain of innovation 

* Corresponding author. 
E-mail address: anthony.sturbois@espaces-naturels.fr (A. Sturbois).  

Contents lists available at ScienceDirect 

Ecological Modelling 

journal homepage: www.elsevier.com/locate/ecolmodel 

https://doi.org/10.1016/j.ecolmodel.2020.109400 
Received 28 July 2020; Received in revised form 13 December 2020; Accepted 14 December 2020   

mailto:anthony.sturbois@espaces-naturels.fr
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2020.109400
https://doi.org/10.1016/j.ecolmodel.2020.109400
https://doi.org/10.1016/j.ecolmodel.2020.109400
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2020.109400&domain=pdf


Ecological Modelling 440 (2021) 109400

2

(Cimon and Cusson, 2018; Magurran et al., 2019) to study dynamics of 
natural systems since the beginning of community ecology (Elton, 
1927). Accordingly, Yang (2020) suggests specific and complementary 
ways to continue building towards a more temporally explicit frame
work for community ecology, notably, by increasing the representation 
of temporal changes and developing specific and general insights into 
event -or factor- driven dynamics. In this way, complementary metrics 
are needed to document community and environmental changes 
(Cimon and Cusson, 2018). While the availability of long-term, large-
scale, and high-resolution data is the most limiting factor to study 
temporal patterns in biodiversity (Dornelas et al., 2013), the develop
ment of methodological approaches to analyse, synthesize, and ulti
mately represent the dynamics of ecological systems is also an essential 
issue. 

Until now, most analytical and representation frameworks have been 
based on the comparison of synchronous observations across sites and 
between repeated surveys (M. De Cáceres et al., 2019). One common 
approach is to analyse independently the changes observed between two 
surveys and to repeat this step as many times as necessary to cover the 
corresponding study period. However, this type of procedure quickly 
becomes inefficient as the number of samples increases. A potential 
solution to deal with long-term data sets could be to discard interme
diate surveys and to focus only on starting and ending time points of a 
study period. However, this may hide crucial changes occurring during 
intermediate periods (i.e. transitional states) and, hence its usefulness to 
study the dynamics of ecological systems may be limited. 

Multivariate analyses have been widely adopted for many decades in 
ecology, embracing all forms of statistical analyses applied to data in 
which more than one character are observed per individual (Kendall, 
1958). Several multivariate statistical frameworks focus on testing hy
potheses of community dynamics (Buckley et al., 2018). Consequently, 
multivariate frameworks still constitute the primary approach to analyse 
ecological datasets and an important source of methodological in
novations. A common approach is the calculation of dissimilarity 
indices, which allows differences between a pair of ecological states to 
be summarized in a single metric. Since community data tables can 
represent both temporal and spatial variation of ecological states, the 
resulting symmetric dissimilarity matrices can contain spatial, temporal 
or spatio-temporal information. Then, the use of ecological trajectories 
in a multivariate space defined by the calculation of a dissimilarity index 
between all pairs of observations allows to representing the dynamics of 
a system. Ordination methods are therefore often complemented with 
trajectory analyses, in which changes over time or as a response to 
natural or anthropogenic pressures are represented by a set of vectors 
linking consecutive ecological states. These approaches have been pre
viously applied to a wide variety of ecological systems, including plant 
assemblages (Austin, 1977; Fukami et al., 2005), bird assemblages 
(Hudson and Bouwman, 2007; Sica et al., 2018; Haig et al., 2019), and 
aquatic (Matthews et al., 2013; Mathers et al., 2016; Boit and Spencer, 
2019; David et al., 2020) or marine ecosystems (Dauvin and Ibanez, 
1987; Smith et al., 2010; Legendre and Salvat, 2015; Cimon and Cusson, 
2018). In this context, geometric properties of trajectories, defined in 
the space of an ordination diagram, constitute relevant parameters to 
study the dynamics of ecological systems, including intermediate tran
sitional states. The geometric study of community trajectories has 
sometimes been defined by two or three axes of an ordination space 
(Boit and Spencer, 2019; Matthews et al., 2013) but this has the draw
back of discarding the information contained in additional dimensions. 
In order to generalize this approach, M. De Cáceres et al. (2019) 
considered community dynamics as trajectories in a chosen space of 
community resemblance, with no limit in the number of dimensions 
included. In the Community Trajectory Analysis (CTA) framework, 
trajectories are considered as objects composed of trajectory segments to 
be analysed and compared using their metrics based on their geometry 
in a multivariate space. 

In 2D multivariate ordinations, accounting for fine-scale variability 

hinders readability especially when the number of sites and/or surveys 
is high, even if different line formats and colours are used to facilitate 
the identification of different trajectories. A common approach to 
represent the amount of change across space between two surveys (t1 
and t2) is to produce a single map (i.e. a plot on geographical axes) in 
which, for instance, the symbol size is proportional to the distance be
tween states (x1 and x2 for each sampling unit) (Bacouillard et al., 2020; 
Kröncke et al., 2011). However, with this method, the addition of one 
more survey involves the production of two more maps to represent 
changes between t2 and t3 states and the overall change between t1 and t3 
after the last survey. For three ecological surveys, this method is still 
doable, but it fails to represent simultaneously all ecological trajectory 
segments and, more importantly, information about ecological di
rections. Although mapping diversity or similarity indices are fused in 
many ecological studies (Granger et al., 2015), mapping temporal 
changes through symbols representing trajectory metrics, rather than 
the dissimilarity between consecutive surveys, has not yet been suffi
ciently explored in our opinion. Considering the direction of ecosystem 
dynamics, circular statistics (analysis of directions ranging from 0 to 
360◦(Batschelet, 1981)), which are commonly used in behavioural 
ecology, appear as promising alternatives to quantitatively represent the 
direction of dynamics of ecological systems, and to complement tradi
tional modes of representation. In this perspective, circular statistics 
may offer significant insights to represent trajectory properties, that are 
not evident from qualitative comparisons of ordination diagrams, as 
suggested for food webs by Schmidt et al. (2007). 

In this paper, we propose an extension of the CTA framework to 
represent temporal changes between more than two temporal surveys 
with respect to a chosen baseline state. As initially defined in M. De 
Cáceres et al. (2019), CTA was focused on the study of ecological states 
corresponding to consecutive surveys. A complementary overarching 
question being to know how ecological states change with respect to an 
initial state and/or to a baseline, an alternative way to analyse trajec
tories can be developped, considering these fixed ecological states as 
central in the analysis. As CTA allows calculating lengths, angles be
tween trajectory segments and directionality of trajectories, it is likely to 
be a complementary framework to approaches comparing data to initial 
state based on distances or distance sequences (Bacouillard et al., 2020; 
Bagchi et al., 2017; Legendre, 2019; Legendre and Salvat, 2015), dif
ferences in cluster classification (Kröncke et al., 2011) or shifts along 
multivariate axes (McLean et al., 2019). 

The main contributions of this article concern: (1) the extension of 
CTA with new metrics that describe community trajectories with respect 
to a chosen state and new ways of defining angles, (2) the synthetic 
representation of trajectories through three innovative figure concepts: 
(a) map of changes between ecological states including information 
about recovering and departing dynamics with respect to a baseline or 
initial state, (b) a chart of trajectories from initial state to represent 
trajectory paths and overall changes, (c) trajectory rose to summarise, in 
a circular framework, the direction and length of ecological trajectories. 
Four case studies are then developed to illustrate the use of our proposed 
metrics and representation tools. Finally, their potential applications 
and limitations are discussed. 

2. Methods 

The methods detailed in the following subsections are based on 
trigonometrical properties of trajectories in n-dimensional spaces and 
their representation in innovative synthetic figures. 

2.1. Characterizing ecological trajectories 

2.1.1. CTA framework 
We follow here the terminology of De Cáceres et al. (2019), for 

describing and comparing community trajectories in a multidimensional 
space. Given a target community whose dynamics are surveyed, let o1, 
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o2, …, on be an ordered set of n observations (n > 1) and t1, t2, …, tn the 
corresponding set of ordered survey times (i.e. t1 < t2 < …< tn) (Fig. 1, 
A). For all i in {1, 2, …, n}, xi contains the coordinates, or ecological 
state, corresponding to oi in a multidimensional space Ω. The geometry 
of the trajectory T is formalized using a set of n – 1 directed segments {s1, 
…, sn-1}, where si = {xi, xi+1} is a segment with endpoints (community 
states) xi and xi+1 (Fig. 1, A). 

The multivariate space Ω supporting CTA is defined by the choice of 
dissimilarity coefficients (e.g. Bray-Curtis), which is used to evaluate 
resemblance between pairs of community observations (Legendre and 
De Cáceres, 2013; M. De Cáceres et al., 2019). Note that users can choose 
the scale of CTA by setting the scale at which communities are defined. 
For example, community trajectories may be studied at the site level, or 

at larger scales (e.g. landscape or regional level) if community data are 
aggregated across sites. 

2.1.2. Trajectory metrics 
Original CTA metrics relevant for this paper are first introduced 

(Section 2.1.2.1) and new contributions are detailed from Section 
2.1.2.2. 

2.1.2.1. Original CTA metrics. The trajectory segment length is the dis
tance between two consecutive ecological states (De Cáceres et al., 
2019). The greater the length of a trajectory segment, the greater the 
distance between ecological states is. The length of a segment si is given 
by the distance between its two endpoints in space Ω (Fig. 1, A): L(si)=d 

Fig. 1. Example of an ecological state trajectory T from five observations (o1, …, o5) at five ordered points in time (t1, …, t5). Ecological state observations are 
represented using a corresponding set of states (x1, …, x5) in a multidimensional space (two principal axes are shown only). The trajectory is represented on the plane 
formed by community axes and in a three dimensional plot including the time axis (continuous arrows). The trajectory can be also formalized in terms of four 
directed consecutive segments (s1, …, s4) in the same space (A). xi represents positions (coordinates) and si are segments, so that the sum of consecutive segment 
lengths is the total length of the trajectory pathway. One can also consider vectors with respect to the initial state (B,C) with four vectors departing from x1 (x1-x2, …, 
x1-x5). Lengths Lt1ti measure the net change between t1 and ti (B). Several spherical angles (∡) can be considered, with different interpretation: ∡ Ɵ (xi, xj, xk) is 
calculated between consecutive segments and defined as the change in direction of vector xj-xk with respect to vector xi-xj in this plane (A); ∡ ω (x1, xi, xj) is calculated 
with respect to the initial state and defined as the change in direction of vector x1-xi with respect to vector xi-xj in this plane(C); ∡ α is calculated between each 
trajectory segment and a chosen direction (here axis 2) in a 2D multivariate space (D). 
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(xi,xi+1). The trajectory path length (De Cáceres et al., 2019) is the total 
length of all site trajectory segments over surveys of a study period. This 
metric contributes to informing about the overall temporal variation of 
the state of a site within a study period: 

L(T) =
∑n− 1

i=1
L(si) =

∑n− 1

i=1
d(xi, xi+ 1)

Lengths of segments (or subtrajectories) are influenced by the time 
interval between surveys. Hence, lengths alone do not allow proper 
consideration of ecological dynamics (i.e. the speed of change). To this 
aim, a better alternative is to consider trajectory speeds, after dividing 
lengths by the time interval between observations S(si)= L(si)/(ti+1-ti). 

Another aspect of community dynamics is approached by the 
calculation of angles (De Cáceres et al., 2019). Let {xi, xj, xk} be a triplet 
of ecological states of a trajectory T that are ordered in time (i.e. where ti 
< tj < tk). If the set of distances {d(xi, xj), d(xi, xk), d(xj, xk)} fulfills the 
triangle inequality, then angles can be measured on the Euclidean plane 
that contains these three states (Fig. 1, A). The angle 0 ≤Ɵ (xi, xj, xk) ≤
180◦ is defined as the change in direction of vector xj -xk with respect to 
vector xi - xj in this plane. The trajectory is linear when Ɵi = 0◦ If Ɵi =

180◦, trajectory is still linear but opposite in sense. 
Finally, the overall directionality of trajectories provides information 

about the consistency with which the site is following the same direction 
and, therefore, the stability of the drivers of ecological dynamics that 
condition ecological states. The directionality statistic (De Cáceres et al., 
2019) of a trajectory is measured using the following: 

DIR(T) =

∑
Wijk*

(
180− θijk

180

)

∑
Wijk  

where Ɵijk= Ɵ(xi, xj, xk), wijk= d(xi, xj) + d(xj, xk) and summation is over 
all r time-ordered triplets. DIR(T) is bounded between 0 and 1 where the 
maximum value corresponds to a straight trajectory. This metric is 
useful to distinguish between communities subjected to stabilizing (non- 
directional) selection from those influenced by directional or disruptive 
selections (Lamothe et al., 2019; Matthews et al., 2013). 

2.1.2.2. Trajectory analysis with respect to an initial state. Net change 
(Lt1-tj) - Let x1 be an initial (or baseline) state. The net change is defined 
for any pair of states {x1, xj} as the length (i.e. distance) Lt1-tj = d(x1, xj) 
between x1 and xj (Fig. 1, B). When calculated at the scale of an overall 
study period between x1 and xn survey, this metric evaluates the difference 
between the community at the end of the study period and its initial 
state (overall net trajectory change). 

Net change ratio (NCR) – The net change ratio is defined as the ratio 
between the overall net trajectory change and the trajectory path length: 
NCR = Lt1-t n survey / L(T). NCR informs about the straightness of 
recovering or departing processes with respect to the initial state. 

A high NCR indicates that a great part of the trajectory path con
tributes to net changes and illustrate a relative stability of drivers of 
ecological dynamics. Inversely, a low NCR coupled with high segment 
lengths illustrates instability of drivers of ecological dynamics and 
highlights that a small part of the trajectory path contributes to net 
changes. In this sense, NCR and DIR(T) are complementary metrics. 
High DIR(T) would be equal to High NCR but, a low DIR(T) may not be 
equal to low NCR depending on segment lengths. 

Recovering or Departing Trajectory (RDT) - Let us now consider a {x1, 
xj, xk} triplet where the first element corresponds to the baseline state (t1 
< tj < tk). The net change of the {x1, xj} pair, Lt1-tj = d(x1, xj), and the net 
change of the {x1, xk} pair, Lt1-tk = d(x1, xk), can be used to qualify the 

Fig. 2. Different scenarii (A, B, C and D) of lengths and ∡ ω induce recovering (Rt) or departing (Dt) trajectories from xi. In a 2D multivariate space, the recovering 
area (RIS, white) is conceptually defined by a circle with centre x1 and diameter 2 Lt1-ti, the rest of the space being considered as the departing area (DIS, grey). 
Angles (LIS) and lengths both contribute to net changes. Only two dimensions are shown. In a n-dimensional space, RIS area become an hyper-sphere. 
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dynamics with respect to the initial state as recovering (i.e. return to the 
initial state) or departing (i.e. increasing distance from the initial state). 
Let us define RDT (Recovering or Departing Trajectory) metric as the dif
ference between these two distances: RDT= d(x1, xj) - d(x1, xk). RDT > 0 
indicates a closer ecological state in xk than in xj and, consequently, 
implies a recovering towards the initial state (RIS) x1 between xj and xk 
(Fig. 2). Inversely, RDT<0 indicates a farther ecological state in xk than 
in xj and consequently implies a departure from the initial state (DIS) 
between xj and xk. RDT could help to determine the effectiveness of 
management on the ecological state of a community with respect to a 
baseline state defined as an objective to be achieved or inversely the 
impact of a natural or anthropogenic event. Additionally, in a context of 
disturbances in which x1, xj, and xk represent pre-disturbance, disturbed, 
and post-disturbance states, respectively, RDT can be used as a measure 
of the ecosystem resilience. 

2.1.2.3. Linearity of changes with respect to an initial state. Linearity with 
respect to the initial state (ω) - We propose to calculate the angle ω (x1, xj, 
xk) between trajectory vectors {x1, xj} and {xj, xk} in a 0–180◦ system 
considering 0◦ as the same direction of the first vector (Fig. 1, C). Angles 
allow assessing the linearity of changes with respect to an initial state (LIS) 
according to a vector of reference [i.e. first segment or subtrajectory 
(aggregation of segments) of an ecological trajectory] in the Euclidean 
space. When space Ω is 2D, ω (as well as Ɵ) can be reported in a 0–360◦

system, if desired (see examples in Fig. 10 and 13). 
The direction (angles) within a trajectory constitutes an important 

component of the ecological variability, as different directions do not 
make the same ecological sense, even if the lengths (or speeds) of these 
trajectories are equivalent. There is a correspondence between ωi angles 
and RDT: Indeed, if angle ωi < 90◦ or ωi >270◦ the trajectory departs 
from the x1 initial state (i.e. RDT < 0) regardless of trajectory length. On 
the contrary, if 90◦ < ωi < 270◦ the trajectory recovers (RIS area; RDT >
0) or departs (DIS area; RDT < 0) depending on both angle and length 
values (Fig. 2). 

2.1.2.4. Directions with respect to the plane formed by two axes. If users 
decide that the variance is sufficiently explained by the first two axes of 
an ordination, it becomes relevant to consider all trajectory segment 
directions with respect to the interpretation of axes, normally done using 
the loadings of original variables or their degree of correlation with 
additional variables. 

Segment directions in 2D ordination (α) - We propose to assess angles α 
(xi, xj, axis 2) considering the second axis of the ordination diagram as 
the North (0◦) (Fig. 1, D). α allows comparing segment direction with 
respect to the influence of the variables used to interpret the two ordi
nation axes. 

2.1.2.5. Testing and comparing trajectory directions. Circular data need 
special treatment in data analysis: an angle of 355◦ is much similar to an 
angle of 5◦ than it is to an angle of 330◦, hence a simple arithmetic mean 
for example can be quite misleading (Landler et al., 2018). In order to 
analyse the uniformity of directions, Landler et al. (2018) recommended 
using the Rayleigh test when unimodal departure from uniformity is 
expected, and the Hermans-Rasson test (HR) for multimodal departures 
(Landler et al., 2019). Such tests allows verifying if there is a unimodal 
bias in the distribution of angles directions, i.e. if the direction of vector 
xj-xk changes with respect to vector xi-xj are evenly distributed (null 
hypothesis) or concentrated around one or more particular directions. 
One should prioritize the Rayleigh or the HR tests- depending the type of 
distribution of direction and following Landler et al. (2019) recom
mendations. The Watson-William’s two test is used to test the homo
geneity (null hypothesis) or the significance of difference of segment 
direction between different factors. 

2.1.3. Software 
To facilitate conducting the extension of the CTA framework, func

tion options and new functions have been developed to calculate metrics 
considering x1 as a constant baseline over time. This new set of CTA tools 
has been integrated into a new version (v.1.7.9) of the package ‘vegclust’ 
(De Cáceres et al., 2010) available on CRAN and GitHub repositories. 

2.2. Representing the variability of ecological states and trajectories 

2.2.1. Mapping trajectory dynamics with respect to an initial state 
Here we suggest the use of maps to represent site scale dynamics 

through geometrical properties of trajectories in synthetic figures ac
counting for temporal variability at the sampling unit scale. 

In order to avoid multiple distance maps between every pair of 
surveys, we propose the use of a single map to represent all at once for 
each site of a study area: (1) net change between x1 and xn-survey, (2) 
segment length (or subtrajectory length, Sb) Si>1, and Sj>i, and (3) RIS or 
DIS segment or subtrajectory lengths between xi and xn-survey. 

Symbols proposed in our synthetic map to represent net change and 
intermediate segments or subtrajectories (defined arbitrarily if n- 
surveys>3) are detailed in Fig. 3. Net changes are represented through a 
circular symbol proportional to the length to vector x1-xj>i. On both 
sides, a bottom triangle symbol represents the x1-xi>1 vector and a top 
triangle the xi>1-xj>i vector. For both triangles, the size is proportional to 
the length of respective vectors, while the orientation and colour of the 
top triangle illustrate the direction (recovering or departing) of the 
second vector with respect to the initial or baseline state. When more 
than three ecological states are used, directionality of subtrajectories 
can be represented with colors in both triangles (Fig. 4). 

In this map, circles representing net changes are drawn on the 
geographical coordinates of sampling locations, while the bottom and 
top triangles are placed on the map by subtracting or adding an arbitrary 
value to the Y coordinate. 

It may be relevant to define subtrajectories according to a critical 
event, which influence ecological states [e.g. new pressures, manage
ment activities, disturbance (fire, storm, volcanic eruption, oil spill…)] 
or to a period considered as a baseline in order to help to better un
derstand the shape of trajectories in terms of lengths and angles before 
and after perturbation. In this case, one should adapt the temporal 
period represented in the bottom triangle. Inversely, without a priori 
knowledge about such event, the occurrence of saltatory and non- 
directional trajectories (Lamothe et al., 2019; Matthews et al., 2013), 
which vary with the overall shape of the trajectory path could help to 
identify key periods in the history of an ecosystem regarding environ
mental or other contextual parameters. 

2.2.2. Adding CTA metrics to ordination diagrams 
Trajectories are traditionally represented on 2D or 3D ordination 

diagrams using arrows for segments. Here, we propose to complete this 
kind of chart by adding information about trajectory metrics such as net 
changes. Data point symbols represent the coordinates of each ecolog
ical state according to the axes of the ordination diagram and lines 
represent segments between transitional ecological states. The novelty 
lies in representing the distance to the initial state (i.e. first state of the 
time series) and time by the dot size and colour, respectively. If a single 
trajectory is represented and one wants to better illustrate the evolution 
of net changes over time, the trajectory can be centred around the initial 
state by subtracting the coordinates of the state corresponding to the 
initial state (x1) from the coordinates of all ecological states. 

2.2.3. Trajectory rose diagrams 
We propose to use a Trajectory Rose (TR) to represent the distribu

tion of directions in the multivariate space Ω, as it is traditionally done 
in meteorology to represent wind directions and speeds (Azorin-Molina 
et al., 2017; Cieszyńska and Stramska, 2018) or in currentology (Dal
bosco et al., 2020; Dufresne et al., 2014). The TR consists of a circular 
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bar plot of angles ranging from 0Â◦ to 360Â◦. The barplot structure of TR 
allows representing factors in different bar sections. Depending on the 
aim of the analysis, users can choose to represent Ɵ, ω or α angles in a 
TR. 

2.2.3.1. Distribution of Ɵ, ω values. The baseline state TR provides a 
synthetic visualisation of ecological trends at the scale of a study area 
according to directional changes (0–360◦) of one vector with respect to 
the previous one for each consecutive triplet over time. Users can choose 
to represent distributions of Ɵ, or ω, angles in order to analyse changes 
of direction of each triplet or the direction of each segment with respect 
to the previous or the first segment of the trajectory, respectively. 

Angles Ɵi between segments xi-xj>i and xj>i-xk>j are defined between 
0◦ and 180◦ when considering all multivariate dimensions, or can be 
reported in a 0–360◦ system if calculated from 2D coordinates. Angles ωi 
between segments x1-xi>1 and xi>1-xj>i are also reported in a 0–360◦

system when calculated on 2D coordinates. At this step of the procedure, 
the user must consider whether the variance explained by the two first 
components is high enough to evaluate angles in a 0–360◦ system. 

A value of 0◦ indicates a straight DIS segment with no change of 

direction with respect to x1-xi>1 vector. The distribution of angles is 
represented in barplots whose size indicates the number of segments 
following a given direction: RIS on the bottom part (90◦< ωRIS <270◦) 
and DIS in both parts depending on the length of the second segment of 
each triplet. Lengths of vector {xj, xk} are aggregated on the top of each 
bar section and coloured according to distance, in order to underline if 
direction trends occur in short or long trajectories. 

2.2.3.2. Distribution of α values. α angles are calculated considering the 
second axis of the ordination diagram as the North (0◦) and represented 
in a TR in order to illustrate distribution of segment direction in a 2D 
Euclidean space. It allows the characterization of the nature of change 
by comparing segment direction with respect to the interpretation of 
ordination axes. Variables names aiding the interpretation of directions 
can be positioned in the periphery of the TR (see Fig. 10). 

3. Ecological applications 

Four ecological applications were chosen to illustrate the proposed 
CTA metrics and modes of representation in different ecological systems. 

Fig. 3. Symbols used to represent site ecological net change between ecological state x1 and xj>i (circle) and segment or subtrajectories for Sb x1xi>1 and Rxixj>i or Dt 
xixj>i (triangle): the size of the symbols corresponds to the length of segments. Recovering segment or subtrajectories (Rt xixj>i) are represented with black triangles in 
A and B whereas departing (Dt xixj>i) appears in grey ones (C and D). Trajectory scenarii come from Fig. 2. 

Fig. 4. Examples of RIS, DIS illustrating temporal ecological variability. The size of brown circles is proportional to the net change between x1 and x5. Grey bottom 
triangles represent the first segment between x1 and x2 used as a reference, and the top triangle represents the mean length of the following segments (x3 to x5) 
respectively orientated and coloured according to RIS/DIS trajectory and directionality. 
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3.1. Ecological application 1 – Temporal variability of waterbird 
communities in a marine protected area 

The national nature reserve of Saint-Brieuc (Brittany, France) is a 
marine protected area designed in 1998 to protect wintering birds. 
Anatidae populations are monitored each winter as part of the Inter
national Waterbird Census (IWC). CTA has been performed on the nine 
most abundant species for which a census has been performed during 21 
wintering, from 2000 to 2020 (Supplementary data - Appendix A). 
Anatidae monitoring has been carried out each year in January and 
encompassed the overall presumed functional area (i.e. intertidal 
feeding ground). Lengths, angles, and directionality were calculated 
(Supplementary data - Appendix B). The temporal variability of the bird 
community was illustrated with an ordination diagram centred on the 
initial survey and representing time and net change using symbol colour 
and size, as suggested in SubSection 2.2.2. For the trajectory rose, a bar 
plot of Ɵ angles of each consecutive triplet ranging from 0◦ to 360◦ was 
produced (range of 15◦ for each bar) and this chart was transformed in a 
rose with the function coord_polar() of the package ggplot2 (Wickham, 
2016). 

Lengths of trajectory segments ranged from 2.03 to 6.16 but were 
quite stable over time (3.46 ± 1.06, total trajectory path= 69.14). At the 
end of the study period, distance to the initial state (5.79) was slightly 
higher than the mean value of net change (4.96 ± 1.28). Fig. 5 shows the 
ordination diagram representing the temporal variability of the com
munity with respect to the initial state during the 21 years of sampling. 

The first axis explained twice as much variance (39%) as the second axis 
(20%). Different species have influenced the anatidae community 
(Supplementary data – Appendix A). Three species mainly contribute to 
the first axis and are characterized by a clear decrease in numbers: 
Branta bernicla, Mareca penelope, and to a lesser extent Mareca strepera. 
Other species characterised by stable abundances or drastic interannual 
variations were mostly expressed on the second axis. The first axis 
highlights the temporal pattern of the community which is confirmed by 
the clustering of the most recent sampling occasions on the positive side 
of the first axis (Fig. 5). 

The dominance of 90< Ɵ <270 (84.2%) and RIS and DIS alternation 
(Figs. 5 and 6, Supplementary data – Appendix A) suggest an ecological 
turnover in the species involved in ecological change. This results in a 
strong spring effect around the first state of each consecutive survey, 
which explains the very small NCR between 2000 and 2020 (8.35%) and 
low directionality (0.375). In absence of straight departing (0◦) and 
recovering (180◦) clear dominance, trajectory trends step by step to a 
different ecological state from 2000 to 2020. 

The anatidae community mainly varied depending on the decline of 
two of the most numerous species B. bernicla and Mareca penelope. Other 
influencing species are not consistent over time which resulted in a clear 
spring effect around the initial state. CTA results confirmed conclusions 
of (Sturbois and Ponsero, 2019) and bring new insights concerning the 
way that ecological variability could be expressed through trajectory 
properties of bird communities within a given site. 

Fig. 5. Anatidae community state relative to the initial state chart between 1999 and 2020. The origin of the chart represents the initial state characterized in 1999, 
points represent intermediate ecological states [size=length of each state to initial state, colour= light grey (2000) to black (2020)] and lines represents segments 
between transitional state. The green arrow represents the net change between 2000 and 2020. 
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3.2. Ecological application 2- Spatio-temporal changes of benthic 
communities in a modified system controlled for a tidal power station 

The spatio-temporal variability of benthic communities was studied 

in the Rance estuary (Brittany, France), a modified system whose main 
physical characteristics are controlled by the functioning of a tidal 
power station (Desroy and Retière, 2004). The construction of the fa
cility began in 1963 and was completed in 1966. Before the building of 

Fig. 6. Ɵ trajectory rose for anatidae commu
nities. Bars represent the number of segments 
concerned by each range (15◦) of direction 
(RIS: dark blue; DIS: light blue). The length of 
the second segment of each triplet is repre
sented with point at the head of each bar and 
coloured according to lengths values. Direction 
0◦ represents a straight departing in the same 
direction as the first segment of each triplet. 
Direction 180◦ represents the direction of the 
return to the initial state (first ecological state 
of each triplet).   

Fig. 7. Localisation of stations sampled in 1976, 1995 and 2010 in the upstream Rance, Brittany, France.  
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this infrastructure, the Rance was a ria with sectors differentiated by 
saline stratification whereas the system is now clearly separated into two 
main entities: the marine reservoir and the upstream estuary (brackish 
water). The construction step led to the formation of a hypohaline basin, 
inducing immediate strong mortality events for benthic macrofauna, 
and a period of instability (1967–1975). The control of the physical 
characteristics of the system has affected sediment dynamics, and deeply 
modified benthic habitats (Bonnot-Courtois, 1997; Bonnot-Courtois and 
Lafond, 1991; Retière, 1979). 

Soft bottom benthic communities were sampled at 34 stations in 
1976, 1995 and 2010 in the upstream estuary in order to analyse the 
ecological variability associated with the recovery process and sedi
mentary changes [Fig. 7, (Desroy and Retière, 2004)]. Temporal 
Beta-diversity Index [TBI (Legendre, 2019)] was run in order to verify if 
species gains or losses were responsible for net changes at the scale of 
both consecutive periods. A Hellinger transformation was performed on 
the overall data set prior to multivariate analysis (PCA) and coordinates 
of sites on the ordination diagram for the three surveys were used as 
inputs for community trajectory analysis (Supplementary data - Ap
pendix C). A trajectory map was produced in order to synthetize tra
jectories of benthic communities on each site through the three surveys. 
After data aggregation depending on the station location (upstream vs 
down-stream), a second CTA analysis was performed in order to verify if 
local changes resulted in larger scale variations. 

The species richness dramatically decreased from 149 species in 
1976 to 54 and 73 species in 1995 and 2010, respectively. 27 species 
were common to the three surveys. A high variability of faunal 
composition was observed since 14 species appeared and 70 disappeared 
between 1976 and 1995 vs 38 new species and 19 less between 1995 and 

2010. At the scale of the overall monitoring period, 34 new species were 
observed between 1976 and 2010 and 71 species disappeared. TBI index 
(0.46) confirms that species losses dominated species gains between 
1976 and 1995 (losses for 18 stations and gains for 16 stations). 
Inversely gains dominated losses (0.60) for the 1995–2010 period (los
ses for 10 stations vs gains for 24 stations). 

According to the cumulative trajectory path length of all sites, the 
first period was characterized by a higher ecological variability 539.69 
(15.87 ± 7.70) than the second 469.92 (13.82 ± 5.14). Considering 
trajectory path length at the station scale, seven stations (59, 66, 63, 67, 
57, 61, 58) represented 32.48% (327.96) of the whole trajectory path 
and segment lengths were more important during the second period for 
13 stations (31,71%). Two main spatial trajectory patterns were iden
tified (Fig. 8). Eight stations mainly located in the upstream part (south) 
of the study area were characterized by lower net (19.67 ± 3.84) and 
consecutive changes (9.07± 2.30). Inversely, higher changes charac
terized other stations mainly located in the downstream part (north), 
both at the scale of the overall study period (37.60 ± 13.98) and 
consecutive ones (16.41 ± 6.43). This increasing change along the up
stream/downstream gradient is confirmed by significant correlations 
between latitude and net changes (0.40; p-value = 0.01944) and tra
jectory path lengths (0.45; p-value = 0.00685). RDT was positive for 12 
sites and negative for 22, showing an overall departure dynamic from 
the initial state for 64.71% of sites, mainly located in the northern part 
of the study area (Fig. 8). Lower NCR values indicate significant direc
tion changes between 1976 and 1995 and 1995–2010 trajectory seg
ments (Supplementary data - Appendix C). It implies that changes are 
induced by different species groups between both periods. Differences in 
the magnitude of changes revealed at local scales areas also result in 

Fig. 8. Benthic community trajectory map. Net changes (Nc) are represented with blue circles between 1976 and 2010. Bottom triangles represent S1 (1976 to 1995) 
and top ones S2 (1995 to 2010). The size of the symbols corresponds to lengths. For triangles, colors are used to distinguish recovering (black) from departing 
trajectories (grey). 
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contrasted overall trends (Net change) at the larger scale of upstream 
(23.59) and downstream (49.77) communities. 

The community described in 1976 was already undergoing a recov
ery process, which explains species losses and gains in the following 
surveys. According to the trajectory length of both periods and departing 
trajectories occurring in 64.71% of the stations, benthic communities 
are not yet stabilized in the study area. This seems particularly true for 
downstream stations which suffered most changes. In this area, regular 
changes in environmental conditions according to the estuary func
tioning influenced by the power station would probably not lead to a 
stabilization of benthic communities except if some species character
ized by high dynamics induce long term changes of sediment facies (e.g. 
invasive species such as Crepidula fornicata and Ruditapes philippinarum). 
Future surveys will help to verify these hypotheses. Inversely, upstream 
stations are more stable probably due to environmental factors (influ
ence of fresh water) which limit the variability of communities through a 
drastic selection of species. 

3.3. Ecological application 3 – Temporal sedimentary variability in a 
marine intertidal area 

Sediment facies were studied at 42 sites in the intertidal area of the 
bay of Saint-Brieuc in 1987 (Gros and Hamon, 1988), 2001 (Bonnot-
Courtois and Dreau, 2002) and 2019 (Sturbois et al., unpublished data). 
At these dates, one sample of sediment was collected with a handcorer 
(5 cm diameter, depth of 5 cm) on each site and subsequently analysed 
for grain size distribution in the laboratory. Statistical analyses were 
performed with the package G2sd (Fournier et al., 2014). Sedimentary 
data from the three periods were combined in the same dataset sub
jected to CTA analysis (Supplementary data - Appendix D and E). Two 
TR were then produced in order to illustrate the distribution of α angles 
for both periods with respect to sedimentary variables localised at the 
periphery of TR according to their position in the variable factor map 
(PCA). Finally, HR and Watson-William’s tests were performed to test 
the homogeneity of angles distribution and the difference of segment 
direction between periods, respectively. 

The first two dimensions of the PCA explained 81.8% of the variance 
so consideration of trajectory and segment properties with respect to 
these components is allowable. Trajectory path was lower for the period 
1987–2001 (72.17; 1.72±1.55) than for the period 2001–2019 (99.67; 
2.37±1.96) which indicated more sedimentary variability in the second 
period. However the sedimentary dynamics (i.e. speed of changes) was 
quantitatively quite similar for the two periods (1987–2001:5.16 vs 
2001–2019: 5.53). During the first period, 7 stations contributed to 
46.38% of the trajectory path, whereas 12 stations were responsible for 
59.20% of changes between 2001 and 2019 (Fig. 9, Supplementary data 
- Appendix D and E). This reveals that few sites are characterized by a 

high sedimentary variability (length >3) while changes in most stations 
were more moderate. The TR qualitatively represents the pattern of the 
segments direction according to sedimentary variables (Fig. 10). During 
the first period, segment direction mainly occurred in the bottom part of 
the rose (HR test: T = 11.07, p-value=0.004) according to different sand 
variables from very fine to fine whereas for the segments of the second 
period it occurred in the top part of the rose (HR test: T = 13.77, p- 
value=0.002) according to very fine sand, mud and coarse sediment 
variables (Watson test: T = 0.896; p-value<0.001). These results are 
consistent with the conclusions of Sturbois et al. (unpublished data) who 
showed that thirty years sedimentary changes in the intertidal part of 
the bay of Saint-Brieuc resulted in: (1) an overall slight sloughing 
revealed by the increase in the contribution of very fine sediment classes 
over the study period, (2) a high variability at few stations contrasting 
with moderate changes in the rest of the study area. This ecological 
application confirmed that angles and lengths are relevant trajectory 
properties to qualitatively and quantitatively describe trajectory pat
terns according to period or other factors such as habitat, management 
or pressure. 

3.4. Ecological application 4 – Response of boreal forests to insect 
outbreaks 

The spruce budworm (Choristoneura fumiferana Clem.) is considered 
amongst the most severe defoliating insects of boreal and sub-boreal 
forests of eastern North America (Blais, 1957). Every 30 to 40 years, 
its populations synchronously reaches outbreak levels over large spatial 
scales, generating dramatic ecological and economic impacts due to 
important mortality events in areas dominated by balsam fir (Abies 
balsamea L.) and spruce (Picea spp.). Whereas balsam fir usually presents 
higher levels of defoliation and mortality rates than spruce species of 
northern latitudes, a recent study (Sánchez-Pinillos et al., 2019) found a 
higher resilience of forests dominated by balsam fir than by black spruce 
(P. mariana Mill.). On the contrary, black spruce forests proved to be 
highly resistant to the insect attack but collapsed under long and severe 
outbreaks. We used a subset of plots affected by spruce budworm out
breaks and selected by Sánchez-Pinillos et al. (2019) from Quebec’s 
Forest Inventory (Ministère des Ressources Naturelles, 2013) to assess 
forest responses to insect outbreaks with respect to individual pathways. 
In particular, we compared the dynamics of 74 mixed communities 
co-dominated by balsam fir and white birch (Betula papyrifera Marsh.) 
and 74 stands dominated by black spruce (Fig. 11). Forest plots were 
characterised with species abundance and size classes for the most 
common species. CTA metrics (Supplementary data - Appendix F) were 
used to characterize forest responses to the perturbation and a trajectory 
map was used to illustrate spatial patterns of trajectories according to 
the three types of responses to the outbreak (Sánchez-Pinillos et al., 

Fig. 9. Sedimentary trajectory segments. Arrows represents respectively 1987–2001 (left) and 2001–2019 (right) trajectory segments.  
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2019). We finally used a TR of ω distribution to illustrate differential 
responses according to the type of forest. 

The changes of mixed fir-birch forests was reflected through longer 
trajectory paths (64.73) and lower net change (42.17) than the homol
ogous in black spruce forests (47.70 and 59.95, respectively). However, 
both forests showed similar trajectory patterns, with longer distances 

between the pre-disturbance and disturbed states (sum S1,fir-birch =

37.95; sum S1,spruce = 39.12) than between the disturbed and post- 
disturbance states (sum S2,fir = 26.77; sum S2,spruce = 20.83). 

The trajectory map (Fig. 12) underlines the different responses of 
forests to the outbreak: (1) resistant plots were mainly characterized by 
departing dynamics and low segment length and net change, (2) resilient 

Fig. 10. α trajectory roses for both periods (1987–2001 and 2001–2019) with respect to the two first components of the PCA (81.8% of the variance). Bars represent 
the number of stations concerned by each range (15◦) of direction. Cumulative segment lengths are represented with point at the head of each bar and coloured 
according to length values. Sedimentary variables occurred in the periphery of the TR faithfully to the PCA ordination diagram and are coloured depending on their 
contribution to the two first component. 

Fig. 11. Forest plots sampled in Quebec, Canada. Boreal zone dominated by Basalm fir - White birch appears in dark grey whereas zone dominated by Black spruce – 
Moss appears in light grey. Coloured dotes indicates the type of forest on each station before the outbreak (pre-disturbance state): ABBA-BEPA in red and PIMAhigh 
in green. 
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plots mainly occurred through recovering dynamics, high segment 
lengths, and moderate net change and, (3) changed plots were defined 
by departing dynamics and high segments lengths and net changes. In 
agreement with Sánchez-Pinillos et al. (2019), a higher percentage of 
recovering trajectories was found at southern latitudes, where balsam fir 
co-dominates the stands with white birch. Thus 42% of the plots clas
sified as fir-white mixed forests showed recovering trajectories in com
parison to the 30.1% of black spruce stands. On the contrary, shorter 

trajectories were found above latitude 49◦, reflecting the greater resis
tance of black spruce to the spruce budworm attack. It is important to 
note that, whereas we represented forest dynamics of all forest types in 
the same map, one could be interested in assessing the spatial differences 
in the responses of a given forest community. In such a case, a potential 
alternative could be to generate independent maps or different symbols 
or colours for each forest type. 

TR diagrams of ω distribution showed a clear rupture in trajectory 

Fig. 12. Map of forest trajectories in response to insect outbreak. Net changes are represented by circles coloured according to forest responses to outbreak [resistant 
(green), resilient (blue) and changed (red)]. Bottom triangles represent S1 (pre-disturbance to disturbed state) and top ones S2 (disturbed to final state). Colours of 
triangles are used to distinguish recovering (black) from diverging trajectories (grey). The size of the symbols corresponds to lengths. 

Fig. 13. ω trajectory roses for forest plot characterised as ABBA-BEPA (A) or PIMAhigh (B) at the pre-disturbance state. Bars represent the number of segments 
concerned by each range (15◦) of direction with coloured sections according to the type of forest defined at the final state. Cumulative lengths of the second segments 
(disturbed to final state) of each triplet are represented with point at the head of each bar and coloured according to lengths values (white to black). Direction 
0◦ represents a straight departing in the same direction as the first segment of each triplet. Direction 180◦ represents the direction of the return to the initial state 
(first ecological state of each triplet). 
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direction between disturbed and final state for both forest typologies. 
Many plots did not show changes in forest classification. It is important 
to note that dissimilarities between forest surveys were calculated by 
considering different size classes for the most common species in boreal 
forests (P. mariana, P. glauca, A. balsamea, and B. papyrifera). The TR 
analyses, therefore, illustrated the changes in forest structure resulting 
from the death of the most vulnerable trees. Thus, most black spruce 
forests remained with the same composition after the outbreak or 
changed toward forests with a lower basal area represented by a 
different forest typology (Fig. 13-B, PIMAhigh). In the case of mixed 
forests of balsam fir and white birch (Fig. 13-A, ABBA-BEPA), our results 
showed different successional stages including the dominance of white 
birch colonizing gaps, a transient stage of mixed fir-birch stands, and a 
last successional stage dominated by balsam fir. 

4. Discussion 

The CTA framework represents a valuable approach to assess 
ecological dynamics based on the geometric analysis of trajectories 
defined in a multidimensional space of community resemblance: geo
metric properties of trajectories, projection of a community state onto a 
trajectory, convergence/divergence and geometric resemblance be
tween a pair of trajectories, spatial variation in community dynamics 
(De Cáceres et al., 2019). 

Here, we went further in the definition of geometric properties of 
trajectories by complementing the available metrics and proposing 
synthetic methods of applied representation that facilitate the inter
pretation of ecosystem dynamics over time. For that, we integrated new 
tools (options, and new functions) into the original version of the CTA 
framework (available in package ‘vegclust’ on CRAN and GitHub 
repositories). 

4.1. Extending CTA metrics 

The proposed extension makes the CTA framework more complete in 
order to address a larger panel of ecological questions, especially in 
applied ecology. The new metrics can be useful, for instance, when 
monitoring ecosystem responses to disturbances, or in the context of 
ecosystem restoration, by focusing CTA on geometric properties with 
respect to baseline ecological states. Net changes, new angles and the 
RDT metrics, along with recovering and departing characterisation of 
trajectories, allow addressing these issues, as shown in the case studies 
section. 

The extension includes a new set of functions, based on the two first 
axes of the dissimilarity space in which trajectories were originally 
defined. This facilitates the use of CTA to users aiming to restrict ana
lyses to a 2D Cartesian space or to study trajectories in a biplot including 
only two variables. As the first two axes often explain a part of the total 
variance, the user must be cautious with the interpretation of the angles 
used in trajectory roses, particularly when the two first axes explain a 
small proportion of total variance. When most variance proportion is 
captured, we consider that these metrics can be compared to variables in 
multivariate spaces in order to provide ecological meaning to the di
rection. When using Ɵ and ω angles in TR, CTA returns angles between 
trajectory segments regarding 2D point coordinates of the third survey 
of each triplet with respect to the previous segment. The variance 
explained by the first two axis remains also important here to evaluate 
the relevance of angles transformations even if the coordinates of the 
third point in the 2D space are only used to flip the 0–180 angles in 
positive or negative. Consequently, this step does not influence the ac
curacy of angle calculations considering all components. As each triplet 
forms its own plane it is not possible to provide an ecological meaning 
related to the environmental variables, but we consider that this step of 
the procedure still contributes to efficiently illustrating the degree of 
ecological variability. 

As shown in the second case study, CTA allows the comparison of 

cumulative (departing) or buffering (recovering) local trajectory pat
terns with changes at higher community levels in the multivariate space. 
Measuring changes at these two scales, local vs assemblage or commu
nity, help to determine if small scale changes result in larger scale var
iations. It helps for the potential detection of 1. station dispersion 
occurring without significant centroïd variations at community scale, or 
2. cyclic community variability contrasting with constant departing 
trajectories in other community. 

Further CTA extensions could be envisaged, beyond the one pre
sented here. To complete the qualitative characterisation of recovering 
and departing trajectories, an interesting potential extension of CTA 
may concern the routine definition of trajectory shape with respect to 
the occurrence of saltatory and non-directional trajectories (Lamothe 
et al., 2019; Matthews et al., 2013). Another perspective of CTA 
extension could concern the integration of figures codes (Supplementary 
data - Appendix G) in graphical functions in order to produce trajectory 
maps, charts, and roses. 

4.2. Representing trajectory properties 

We presented and illustrated set of innovative figures to represent 
trajectory properties, offering an interesting alternative to traditional 
representations used in community ecology and other fields where 
temporal series are naturally multivariate. 

4.2.1. Maps of trajectory properties 
Mapping trajectory properties allows the illustration of spatio- 

temporal patterns taking into account all the variability contained in 
multivariate analysis. Information about net change and dynamics 
occurring within the whole study period at a site level is consequently 
efficiently synthesized and sites characterized by stability or high 
ecological variability are easily identifiable. The forest application 
(Section 3.4) highlighted the ability of trajectory maps to illustrate the 
potential link between CTA metrics and other indices. In this article, we 
used lengths, trajectory path and net change as inputs to map RIS and 
DIS dynamics. We encourage also users to represent other CTA metrics 
(e.g. overall trajectory length or speed, directionality or NCR) or the 
behaviour over time of diversity indices or any other ecological vari
ables coming from other analytical frameworks. 

4.2.2. Adding CTA metrics to ordination diagrams 
An ordination diagram centred on the initial state of a trajectory 

allows highlighting both the whole shape of the trajectory (i.e. lengths 
and angles) and the distance to the baseline state (i.e. the net change) at 
each survey of the study period. In ecological application 3.1, net 
changes include all n-dimensional components, but coordinates of data 
points and lines originate from 2D representation of trajectories. If the 
first two multivariate axes do not explain a sufficient part of the vari
ance, the representation of the distance to the initial state should not be 
optimal for trajectory path which is the best fit with other components. If 
one should prioritize between the representations of distances to initial 
states for the relative trajectory directions, a good approach would be to 
centre trajectories considered individually. In this way, each trajectory 
path could express itself on the 2D graph with its maximal variability. 
When the first two axes of multivariate analyses explain the main part of 
the variance, the first option fulfills correctly both the distance and 
relative direction considerations. 

In case of ecological cycles, the net changes, as well as directionality, 
are two good metrics to illustrate distancing trajectories following by 
recovering patterns. The relative to initial state chart proposed in Sec
tion 2.2.2 and Fig. 5, or a simple 2D graph representing net changes 
according to time could be useful to represent alternative distancing and 
recovering trajectories inherent to ecological cycle. However, long time 
series are needed to be able to describe ecological cycles. 
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4.2.3. Using trajectory roses and circular statistics together with CTA 
The trajectory rose concept offers an innovative way to represent 

angles and lengths at the scale of a study area with the possibility to 
explain metrics by explanatory variables using the bar sections of the TR 
(RIS or DIS trajectories, period, habitat, pressure, management…). 
Doing this, the TR allows visualization of direction trend changes with 
corresponding lengths and offers a synthetic way to illustrate ecological 
variability in response to natural or anthropogenic factors. The different 
variants of the TR diagrams, related to different types of angles, are 
useful in representing the distribution of temporal changes in the di
rection of community or ecosystem dynamics and circular statistics al
lows testing and comparing these patterns. Used together, CTA metrics 
and circular statistics are helpful to quantitatively analyse trajectories 
and compare directions, since they provide important insights into ele
ments of community or ecosystem dynamics that are not evident from 
qualitative descriptions of multivariate ordination diagrams. 

4.3. Applications and limitations of the proposed framework 

Multivariate ecological methods are descriptive by nature. Despite 
CTA allows more precise measurement and illustration of ecological 
changes, it suffers the same limitations. Consequently, users should 
complete CTA outputs by a strong specific examination of datasets (i.e. 
species or other variables) in order to improve the ecological meaning of 
observed changes, as done in the four ecological applications of this 
paper, or by complementing CTA with additional analyses providing 
statistical background on community changes. Otherwise, conclusions 
provide an incomplete picture and can mislead the description of 
ecological states (Cimon and Cusson, 2018) with potential misdirecting 
conservation actions or overstating conservation progress. 

Note that ordination spaces are specifically constructed for each 
given data set. Therefore, any data transformation on the raw data or 
sampling decision is likely to affect trajectories, and subsequently, all 
metrics to be calculated. We alert future users and urge them to test for 
this effect before any overall transformations, change in sampling design 
and/or suppression of rare species in a community data set. Further
more, when choosing a dissimilarity coefficient, users should check the 
properties the coefficient has, to determine whether they are suitable for 
the objectives of the study (Legendre and De Cáceres, 2013) and im
plications in CTA performing. 

Users should also be aware of the importance of the definition of the 
first state of a time series. If a sampling program starts in the middle of a 
disturbing event it will not be possible to measure the overall ecological 
response to disturbance because sampling design prevents the definition 
of a predisturbance state. This “missing part” of the ecological trajectory 
depends on sampling starting according to disturbing events and the 
type of disturbance. In applications characterized by cyclic variability, 
the ecological cycle will be underlined whatever the first survey used to 
identify the first ecological state of the time series. However, the posi
tion of this first state within the ecological cycle would only be identified 
regarding future surveys. 

Despite the CTA framework has no limit on the number of compo
nents considered in metric calculations, some of new applications 
(reporting angles Ɵ, ω in a 0–360◦ system, angle α calculation) refer to 
the first two components. In this context, performing CTA analysis im
poses a careful interpretation of the multivariate space in order to assess 
the consequences of such environment reduction. Consequently, users 
have to assume and decide if the variance explained is sufficient to 
calculate these CTA metrics. 

4.4. CTA as a useful multivariate toolbox 

Whereas the extended CTA framework and the associated modes of 
representation constitute potential management and decision-making 
tools, we urge users interested in sharing our synthetic tools with 
managers or stakeholders that interpretation must be done carefully 

with a hand of experienced multivariate ecologists and necessarily 
coupled with a precise data examination. In restoration or perturbation 
contexts, lengths, net change, and RDT metrics allow a real-time mea
surement (i.e. after each survey) of ecological dynamics in response to 
management interventions or potential disturbances, and a quantitative 
assessment of the degree of success in achieving conservation objectives 
or the impact of natural or anthropogenic changes on environmental 
conditions. In this perspective, consideration of angles is complemen
tary to length-based approaches and allows, for instance, the identifi
cation of changes in variables responsible for ecological changes (as in 
TR based on Ɵ angles), as well as the interpretation of the nature of these 
changes (TR based on α angles). 

Our extended CTA framework and our new representation tools can 
easily be applied to other input data and fields in ecology (e.g. abun
dance, biomass, biometry, functional traits, food web) and beyond, as it 
is illustrated in the four case studies. This framework provides useful 
tools in order to (1) assess the achievement of restoration goal (recov
ering after perturbation), (2) highlight ecosystem modifications 
(departing to the initial state), (3) highlight different ecosystem re
sponses regarding chosen factors (RDT and angles), and (4) to poten
tially contribute to the documentation and the representation of long- 
term monitoring observatories. 

In conclusion, the CTA metrics and the extension provide a valuable 
toolbox for trained ecologists (aware of multivariate applications and 
limitations), to analyse ecological variability and trajectories with 
respect to a baseline state. The case studies highlighted the comple
mentarity and the ability of our figure concepts to illustrate spatio- 
temporal trends of different fields in ecology and to modestly 
contribute to the facilitation of their interpretation. 
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